## Preliminary communication

# Hydrogen-bonding ' $\mathrm{Pd}(\mathrm{OH}) \ldots 2(\mathrm{HOAr})$ ' and ' $\left[\mathrm{Pd}\left(\mathrm{OH}_{2}\right)^{+} \ldots{ }^{-} \mathrm{OAr}\right]_{2}$ ', and protonation of a hydroxo-ligand by pentafluorophenol in organopalladium (IV) chemistry. Structural studies of the pallada( IV) cyclopentane adducts $\left[\mathrm{Pd}(\mathrm{OH})\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\left\{(\mathrm{pz})_{3} \mathrm{BH}\right\rangle .2\left(3-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OH}\right)\right]$ and $\left[\mathrm{Pd}\left(\mathrm{OH}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\left\{(\mathrm{pz})_{3} \mathrm{BH}\right\rangle .\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)\right]_{2}$ $\left[(\mathrm{pz})_{3} \mathrm{BH}=\operatorname{tris}(\right.$ pyrazol-1-yl) borate] 

Allan J. Canty ${ }^{\mathrm{a}, *}$, Hong Jin ${ }^{\text {a }}$, Brian W. Skelton ${ }^{\mathrm{b}}$, Allan H. White ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Chemistry, University of Tasmania, Hoburt, Tasmania 7001, Austrulia<br>${ }^{\mathrm{b}}$ Department of Chemistry, University of Western Australia, Nedlands, WA 6009, Australia

Received 5 April 1995


#### Abstract

The pallada(IV)cyclopentane complex $\left[\mathrm{Pd}(\mathrm{OH})\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\left\{(\mathrm{pz})_{3} \mathrm{BH}\right\}\right]$ crystallizes with $m$-cresol to form $\left[\mathrm{Pd}(\mathrm{OH})\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\left\{(\mathrm{pz})_{3} \mathrm{BH}\right\} .2(3\right.$ $\left.\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OH}\right)$ ], in which the hydroxopalladium(IV) group is hydrogen-bonded to two $m$-cresol groups and to the more acidic pentafluorophenol to form $\left[\mathrm{Pd}\left(\mathrm{OH}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\left\{(\mathrm{pz})_{3} \mathrm{BH}\right\} .\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)\right]_{2}$, in which the aquapalladium $(\mathrm{IV})$ group is strongly hydrogen-bonded to two $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}^{-}$ions in a centrosymmetric dimer. These first structural studies in diorganopalladium(IV) chemistry include the first examples of hydroxo- and aqua-palladium(IV) complexes, and also provide models for possible pallada(IV)cyclic intermediates in organic synthesis involving palladium complexes as catalysts.


Keywords: Palladium; Hydroxo-ligand; Crystal structure; Hydrogen bonding; Metallacycle; Water

The chemistry of oxidation state +IV for palladium in its organometallic chemistry has been developed only recently [1], and the first stable diorganopalladium(IV) complex was obtained by the oxidation of a palladium(II) complex by water [2]. Extensive efforts to characterize this pallada(IV)cyclopentane species $\left[\mathrm{Pd}(\mathrm{OH})\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\left\{(\mathrm{pz})_{3} \mathrm{BH}\right\}\right] \quad\left[(\mathrm{pz})_{3} \mathrm{BH}=\operatorname{tris}(\right.$ pyrazol-1yl)borate] crystallographically were unsuccessful, but we have now found that the complex forms crystalline adducts from solutions containing substituted phenols. The adducts provide models for the hydrogen-bonding interaction of phenols with coordinated hydroxo-ligands, and of phenolate ions with coordinated aqua-ligands,

[^0]and thus they are relevant to current interest in hydro-gen-bonding between alcohols and alcoholato-ligands in transition metal complexes [3].

The pallada(IV)cyclopentane complex $[\mathrm{Pd}(\mathrm{OH})$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\left\{(\mathrm{pz})_{3} \mathrm{BH}\right\}\right]$, isolated after addition of water to a solution of the palladium(II) complex ion $\left[\mathrm{Pd}\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\right.$ $\left.\left\{(\mathrm{pz})_{3} \mathrm{BH}\right\}\right]^{-}$[2], dissolves in acetone and, on addition of a $1-1.5$ molar ratio of $m$-cresol or pentafluorophenol, colourless crystals can be isolated [4]. X-ray structural studies of these [5] show them to be $\left[\mathrm{Pd}(\mathrm{OH})\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\left\{(\mathrm{pz})_{3} \mathrm{BH}\right\} .2\left(3-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OH}\right)\right]$ (1) and $\left[\mathrm{Pd}\left(\mathrm{OH}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\left\{(\mathrm{pz})_{3} \mathrm{BH}\right\} .\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)\right]_{2}$ (2), respectively (Fig. 1). All hydroxylic hydrogen atoms for 1 and 2 refined meaningfully in ( $x, y, z, U_{\text {iso }}$ ), and the Figures show all significant inter- or intramolecular interactions.

Both adducts have distorted octahedral geometry for palladium in which the puckered palladacyclic rings
exhibit $\mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(4)$ angles of $84.8(5)^{\circ}$ (1) and $85.2(3)^{\circ}$ (2), and the tridentate ligand forms 'bite' angles of $85.7(3)-86.8(4)^{\circ}(1)$ and $85.2(2)-89.3(2)^{\circ}(2)$. The remaining interligand angles at palladium fall in the ranges $88.9(5)-95.0(4)^{\circ}(1)$ and $88.3(2)-95.3(2)^{\circ}(2)$.


Adduct 1 has a coordinated hydroxo-group which is hydrogen-bonded to two $m$-cresol groups in such a way that the oxygen atom geometry is planar in the unit ' $\mathrm{Pd}(\mathrm{OH})(\mathrm{H}(11))$ ), which has $\mathrm{Pd}-\mathrm{O}-\mathrm{H}$ 132(6) ${ }^{\circ}$, $\mathrm{Pd}-$ $\mathrm{O} \ldots \mathrm{H}(11) 130(3)^{\circ}$, and $\mathrm{O}-\mathrm{H} 0.88(8) \AA$. The interaction $\mathrm{O}(11)-\mathrm{H}(11) \ldots \mathrm{O}$, with an $\mathrm{O}(11) \ldots \mathrm{O}$ distance of $2.69(1) \AA$ and an $\mathrm{O}(11)-\mathrm{H}(11) \ldots \mathrm{O}$ angle of $171(10)^{\circ}$, may be regarded as a hydrogen-bond of medium strength [6]. The other hydrogen-bond, involving an $\mathrm{O} \ldots \mathrm{O}(21)$ distance of $2.65(1) \AA$ is however, weak, since the $\mathrm{O}-\mathrm{H} \ldots \mathrm{O}(21)$ angle of $123(8)^{\circ}$ is well removed from the ideal hydrogen-bond geometry of $180^{\circ}$ [6].

In contrast, adduct 2 has a coordinated aqua-group with pyramidal geometry at the oxygen atom $[\mathrm{Pd}-\mathrm{O}-$ $\left.\mathrm{H}(\mathrm{OA}, \mathrm{OB}) 118(4), 120(4)^{\circ} ; \mathrm{H}(\mathrm{OA})-\mathrm{O}-\mathrm{H}(\mathrm{OB}) 98(6)^{\circ}\right]$ which is hydrogen-bonded to two pentafluorophenolate ions in a centrosymmetric dimer. The angles O $\mathrm{H}(\mathrm{OA}) \ldots \mathrm{O}(11)$ and $\mathrm{O}-\mathrm{H}(\mathrm{OB}) \ldots \mathrm{O}\left(11^{\mathrm{i}}\right)$ are $175(6)$ and $166(6)^{\circ}$, respectively, and the $O \ldots O\left(11,11^{1}\right)$ distances of $2.607(7)$ and $2.577(6) \AA$ indicate that the hydrogenbonding is strong [6]. The $0 \ldots \mathrm{O}$ distances are similar to those reported for square-planar $\mathrm{d}^{8}$ species containing M-OR ... H-OR' hydrogen-bonding [ $\mathrm{O} \ldots \mathrm{O}=$ $2.544(6)-2.64(4) \AA][3 \mathrm{a}-\mathrm{e}, \mathrm{g}, \mathrm{i}]$. The pentafluorophenolate oxygen atom, $\mathrm{O}(11)$, is in an approximately planar environment with $\mathrm{H}(0 \mathrm{~A}) \ldots \mathrm{O}(11) \ldots \mathrm{H}\left(0 \mathrm{~B}^{\mathrm{i}}\right) 97(3)^{\circ}$ and $\mathrm{C}(11)-\mathrm{O}(11) \ldots \mathrm{H}\left(0 \mathrm{~A}, 0 \mathrm{~B}^{\mathrm{i}}\right)$ angles of $133(3)$ and $123(2)^{\circ}$. The presence of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}^{-}$rather than $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$ is reflected in the occurrence of a $\mathrm{C}-\mathrm{O}$ bond distance [ $1.300(7) \AA$ ] which is shorter than that for both coordinated $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}^{-}[1.314(5) \AA$ A $]$ and hydrogen-bonded $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}^{[1.344(4)} \AA$ ] in the palladium(II) complex trans- $\mathrm{PdH}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PCy}_{3}\right)_{2} . \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$ [3b], and shorter than for hydrogen-bonded $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}_{0}$ in $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH} \ldots \mathrm{O}$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O} \ldots \mathrm{HOC}_{6} \mathrm{~F}_{5}\left[1.348(1) \AA\right.$ A] [8a] and $\mathrm{C}_{6} \mathrm{~F}_{5}-$ $\mathrm{OH} \ldots \mathrm{OPPh}_{3}[1.348(3) \mathrm{A}][8 \mathrm{~b}]$.

The crystallization of 1 as a hydroxo-complex, but 2 as an aqua-complex in which the potential ligand $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}^{-}$is not coordinated to palladium, presumably results from a complex interplay of several factors,

Fig. 1. Projections of (a) $\left[\mathrm{Pd}(\mathrm{OH})\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)(\mathrm{pz})_{3} \mathrm{BH}\right) .2\left(3-\mathrm{MeC}_{6} \mathrm{H}_{4}\right.$ $\mathrm{OH})]$ (1) and (b) $\left[\mathrm{Pd}\left(\mathrm{OH}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\left((\mathrm{pz})_{3} \mathrm{BH}\right) .\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}\right)\right]_{2}$ (2) showing selected atom numbering; $20 \%$ thermal ellipsoids are shown for the non-hydrogen atoms, and hydrogen atoms have been given an arbitrary radius of $0.1 \AA$. Selected distances ( $\AA$ ) and angles ( ${ }^{\circ}$ ): 1: $\mathrm{C}(21)-\mathrm{O}(21) 1.37(2), \mathrm{C}(11)-\mathrm{O}(11) 1.35(2), \mathrm{O}-\mathrm{H} 0.88(8), \mathrm{O}(21)-$ $\mathrm{H}(21) 0.9(2), \mathrm{O}(11)-\mathrm{H}(11) 0.8(1), \mathrm{O} \ldots \mathrm{H}(11) 1.9(1), \mathrm{O}(21) \ldots \mathrm{H}$ 2.06(9), $\mathrm{Pd}-\mathrm{O} 2.011(8), \mathrm{Pd}-\mathrm{N}(2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}) 2.18(1), 2.172(8), 2.036(9)$, $\mathrm{Pd}-\mathrm{C}(1,4) 2.04(1), 2.02(1), \mathrm{Pd}-\mathrm{O}-\mathrm{H} 132(6), \mathrm{Pd}-\mathrm{O} \ldots \mathrm{H}(11) 130(3)$, $\mathrm{O}-\mathrm{H} \ldots \mathrm{O}(21)$ 123(8), $\mathrm{O} \ldots \mathrm{H}(11)-\mathrm{O}(11)$ 171(10). 2: $\mathrm{C}(11)-\mathrm{O}(11)$ $1.300(7), \mathrm{O}-\mathrm{H}(0 \mathrm{~A}, 0 \mathrm{~B}) 1.00(7), 0.78(6), \mathrm{O}(11) \ldots \mathrm{H}(0 \mathrm{~A}) 1.60(8)$, $\mathrm{O}\left(11^{\mathrm{i}}\right) \ldots \mathrm{H}(0 \mathrm{~B}) 1.81(6), \mathrm{Pd}-\mathrm{O} 2.035(4), \mathrm{Pd}-\mathrm{N}(2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}) 2.206(5)$, $2.168(5), 2.020(4), \mathrm{Pd}-\mathrm{C}(1,4) 2.041(7), 2.046(8), \mathrm{Pd}-\mathrm{O}-\mathrm{H}(0 \mathrm{~A}, 0 \mathrm{~B})$ $120(4), 118(4), \mathrm{H}(0 \mathrm{~A})-\mathrm{O}-\mathrm{H}(0 \mathrm{O}) 98(6), 0-\mathrm{H}(0 \mathrm{~A}) \ldots \mathrm{O}(11) 175(6)$, $\mathrm{O}-\mathrm{H}(0 \mathrm{~B}) \ldots \mathrm{O}\left(11^{\mathrm{i}}\right) 166(6), \mathrm{H}(0 \mathrm{~A})-\mathrm{O}(11)-\mathrm{H}\left(0 \mathrm{~B}^{\mathrm{i}}\right) 97(3) ; \mathrm{i}=1-x$, $1-y, 2-z$.
including the higher acidity of pentafluorophenol ( $\mathrm{p} K_{\mathrm{a}}$ 5.49) than of $m$-cresol ( $\mathrm{p} K_{\mathrm{a}} 10.08$ ) [9] and the formation of complex structures containing hydrogen-bonding.

The structures reported here provide the first examples of hydroxo-, aqua-, and diorganopalladium(IV) complexes in organopalladium(IV) chemistry, and suggest that it may be possible to develop a rich aqueous solution organometallic chemistry for palladium(IV). The complexes also provide structural models that are relevant to proposals that pallada(IV)cyclic intermediates are involved in organic synthesis [1,10].

## Acknowledgements

We thank the Australian Research Council for support and Johnson Matthey Ltd for generous loans of palladium salts.

## References and notes

[1] A.J. Canty, Acc. Chem. Res., 25 (1982) 83 and references therein.
[2] A.J. Canty, S.D. Fritsche, H. Jin, B.W. Skelton, and A.H. White, J. Organomet. Chem., (1995), 490 (1995) C18.
[3] (a) S.E. Kegley, C.J. Schaverien, J.H. Freudenberger, R.G. Bergman, S.P. Nolan and C.D. Hoff, J. Am. Chem. Soc., 109 (1987) 6563; (b) C. Di Bugnu, M. Pasquali, P. Leoni, P. Sabatino and D. Braga, Inorg. Chem., 28 (1989) 1390; (c) Y.-J. Kim, K. Osakada, A. Takenaka and A. Yamamoto, J. Am. Chem. Soc., 112 (1990) 1096; (d) K. Osakada, Y.-J. Kim, M. Tanaka, S.-I. Ishiguro and A. Yamamoto, Inorg. Chem., 30 (1991) 197; (e) A.L. Seligson, R.L. Cowan and W.C. Trogler, Inorg. Chem., 30 (1991) 3371; (f) M. Sommovigo, M. Pasquali, P. Leoni, D. Braga and P. Sabatino, Chem. Ber., 124 (1991) 97; (g) P.L. Alsters, P.J. Baesjou, M.D. Janssen, H. Kooijman, A. Sicherer-Roetman, A.L. Spek and G. van Koten, Organometallics, 11 (1992) 4124; (h) R.D. Simpson and R.G. Bergman, Organometallics, 12 (1993) 781; (i) G.M. Kapteijn, D.M. Grove, G. van Koten, W.J.J. Smeets and A.L. Spek, Inorg. Chim. Acta, 207 (1993) 131; (j) F. Ozawa, I. Yamagami and A. Yamamoto, J. Organomet. Chem., 473 (1994) 265.
[4] For 1 subsequent addition of petrolcum ether (b.p. $60-80^{\circ} \mathrm{C}$ ) until cloudiness occurs is required, followed by cooling to $-20^{\circ}$, evaporation to low volume, filtration, further slow evaporation and filtration, and crystallization from the filtrate (20-40\% yield). For 2 only subsequent evaporation to dryness and recrystallization from acetone/petroleum ether ( $\sim 100 \%$ ) is required. The adducts exhibit ${ }^{1} \mathrm{H}$ NMR resonances $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$
for the pallada(IV)cyclopentane and tris(pyrazol-1-yl)borate moieties that are within 0.05 ppm of that for the parent complex $\left[\mathrm{Pd}(\mathrm{OH})\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)\left\{(\mathrm{pz})_{3} \mathrm{BH}\right\}\right]$, except for the $\mathrm{PdCH}_{2}$ resonances which are shifted downfield by 0.07 and 0.14 ppm for 1 , and 0.16 and 0.26 ppm for 2 . Selected NMR data: $1: \mathrm{d} 1.68(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.26(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 3.85(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{PdCH}_{2}\right), 4.26(\mathrm{q}, 2 \mathrm{H}, \mathrm{PdCH} 2), 6.24[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(4) \mathrm{pz}], 6.30$ [m, $1 \mathrm{H}, \mathrm{H}(4) \mathrm{pz}], 6.65-7.07(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}), 7.69[\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}(5) \mathrm{pz}]$, 7.71 [d, $1 \mathrm{H}, \mathrm{H}(5) \mathrm{pz}], 7.75$ [d, $1 \mathrm{H}, \mathrm{H}(3) \mathrm{pz}$ ], 7.77 [d, $2 \mathrm{H}, \mathrm{H}(3)$ pz]. 2: d $1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.94(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{PdCH}_{2}\right), 4.38\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{PdCH}_{2}\right), 6.24[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(4) \mathrm{pz}], 6.32[\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}(4) \mathrm{pz}], 7.68[\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}(5) \mathrm{pz}], 7.71[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}(5) \mathrm{pz}]$, 7.74 [d, $1 \mathrm{H}, \mathrm{H}(3) \mathrm{pz}], 7.78$ [d, $2 \mathrm{H}, \mathrm{H}(3) \mathrm{pz}]$. Both adducts have satisfactory microanalyses $(\mathrm{C}, \mathrm{H}, \mathrm{N})$.
[〕] Crystal data: 1: $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BN}_{6} \mathrm{O}_{3} \mathrm{Pd}, \quad M=608.8$, monoclinic, $P 2_{1} / n, a=10.945(6), \quad b=20.07(1), c=13.359(4) \AA, \beta=$ $101.17(3)^{\circ}, Z=4$. Conventional $R, R_{\mathrm{w}}$ (statistical weights) on $|F|$ were $0.055,0.048$ for $N_{0}=2216$ 'observed' $[I>3 \sigma(I)]$ out of $N=5056$ independent absorption-corrected room temperature ( $T \sim 295$ ) diffractometer reflections $\left(2 \theta_{\max }=50^{\circ}\right.$ ). 2: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BF}_{5} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Pd}, \quad M=576.6$, monoclinic, $P 2_{1} / c, \quad a=$ $10.424(3), b=22.97(2), c=9.755(3) \AA, \beta=106.38(2)^{\circ}, Z=4$. $R, R_{\mathrm{w}}=0.038,0.038$ for $N, N_{0}=3938,2722$. Full matrix least squares refinements were applied, and thermal parameter forms were anisotropic for all non-hydrogen atoms. In 2 , all hydrogen atoms were refined in ( $x, y, z, U_{\text {iso }}$ ); in 1 all hydroxylic hydrogen atoms were refined thus.

Tables of atom coordinates and thermal parameters and a complete list of bond lengths and angles has been deposited at the Cambridge Crystallographic Data Centre.
[6] Hydrogen-bonding $\mathrm{O}-\mathrm{H} . . \mathrm{O}$ is usually classified according to $\mathrm{O} \ldots \mathrm{O}$ distances as very strong $(<2.50 \AA$ ) , strong ( $2.50-2.65$ $\AA$ ), medium ( $2.65-2.80 \AA$ ) or weak $(>2.80 \AA$ ). The energy of bent $\mathrm{O}-\mathrm{H} \ldots \mathrm{O}$ bonds is reduced to $\sim 90 \%$ for an angle of $165^{\circ}$, and to less than $10 \%$ for an angle of $110^{\circ}$, relative to that for an angle of $180^{\circ}$ [7].
[7] See e.g. P. Gilli, V. Bertolasi, V. Ferretti and G. Gilli, J. Am. Chem. Soc., 116 (1994) 909.
[8] (a) T. Gramstad, S. Husebye and K. Maartmann-Moe, Acta Chem. Scand., B39 (1985) 767; (b) Acta Chem. Scand., B40 (1986) 26.
[9] E. Chrystiuk, A. Jusoh, D. Santafianos and A. Williams, J. Chem. Soc., Perkin Trans. II, (1986) 163.
[10] Recent articles, and references therein: (a) I. Guibert, D. Neibecker and I. Tkatchenko, J. Chem. Soc., Chem. Commun., (1989) 1850; (b) N. Kamigata, M. Satoh and M. Yoshida, J. Organomet. Chem., 401 (1991) C26; (c) S.K. Meegalla, N.J. Taylor and R. Rodrigo, J. Org. Chem., 57 (1992) 2422; (d) R.C. Larock, M.J. Doty and S. Cacchi, J. Org. Chem., 58 (1993) 4579; (e) B.M. Trost, G.J. Tanoury, M. Lautens, C. Chan and D.T. MacPherson, J. Am. Chem. Soc., 115 (1994) 4255; (f) A. de Meijere and F.E. Meyer, Angew. Chem., Int. Edn. Engl., 33 (1994) 2379; (g) M. Catellani and M.C. Fagnola, Angew. Chem., Int. Edn. Engl., 33 (1994) 2421; (h) G. Dyker, Chem. Ber., 127 (1994) 739; (i) D.J. Cárdenas, C. Matco and A.M. Echavarren, Angew. Chem., Int. Edn. Engl., 33 (1994) 2445.


[^0]:    * Corresponding author.

