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Abstract 

The pallada(IV)cyclopentane complex [Pd(OHXC,H,){(pz),BH}] crystallizes with m-cresol to form [Pd(OHXC,H,)((pz),BH).2(3- 
MeC,H,OH)], in which the hydroxopalladium(IV) group is hydrogen-bonded to two m-cresol groups and to the more acidic 
pentafluorophenol to form [Pd(OH,XC,H,){(pz),BH}.(C,F,O)],, in which the aquapalladium group is strongly hydrogen-bonded to 
two C,F,O- ions in a centrosymmetric dimer. These first structural studies in diorganopalladium(IV) chemistry include the first 
examples of hydroxo- and aqua-palladium(IV) complexes, and also provide models for possible pallada(IV)cyclic intermediates in organic 
synthesis involving palladium complexes as catalysts. 
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The chemistry of oxidation state + IV for palladium 
in its organometallic chemistry has been developed only 
recently [ 11, and the first stable diorganopalladium(IV) 
complex was obtained by the oxidation of a 
palladium(I1) complex by water [2]. Extensive efforts to 
characterize this pallada(IV)cyclopentane species 
[Pd(OH)(C,H,){(pz),BH}] [(pz),BH = tris(pyrazol-l- 
yl)borate] crystallographically were unsuccessful, but 
we have now found that the complex forms crystalline 
adducts from solutions containing substituted phenols. 
The adducts provide models for the hydrogen-bonding 
interaction of phenols with coordinated hydroxo-ligands, 
and of phenolate ions with coordinated aqua-ligands, 
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and thus they are relevant to current interest in hydro- 
gen-bonding between alcohols and alcoholato-ligands in 
transition metal complexes [3]. 

The pallada(IV)cyclopentane complex [Pd(OH)- 
(C,H,){(pd,BH~I, isolated after addition of water to a 
solution of the palladium(U) complex ion [Pd(C,H,) 
{(pd,BH)I- [21, d issolves in acetone and, on addition 
of a 1-1.5 molar ratio of m-cresol or pentafluorophe- 
nol, colourless crystals can be isolated [4]. X-ray struc- 
tural studies of these [5] show them to be 
[Pd(OH)(C,H,){(pz),BH].2(3-MeC,H,OH)] (1) and 
[Pd(OH,)(C,H,)((pz),BH}.(C,F,O)l, (21, respectively 
(Fig. 1). Al1 h d y roxylic hydrogen atoms for 1 and 2 
refined meaningfully in (x, y, z, Ui,,), and the Figures 
show al1 significant inter- or intramolecular interactions. 

Both adducts have distorted octahedral geometry for 
palladium in which the puckered palladacyclic rings 
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exhibit C(l)-Pd-C(4) angles of 84.8(5)” (1) and 
85.2(3)0 (2>, and the tridentate ligand forms ‘bite’ an- 
gles of 85.7(3)-86.8(4)” (1) and 85.2(2)-89.3(2)0 (2). 
The remaining interligand angles at palladium fa11 in the 
ranges 88.9(5)-95.0(4)” (1) and 88.3(2)-95.3(2)” (2). 

H(2l)d 

(0) 

Adduct 1 has a coordinated hydroxo-group which is 
hydrogen-bonded to two m-cresol groups in such a way 
that the oxygen atom geometry is planar in the unit 
‘Pd(OH)(H(ll))‘, which has Pd-0-H 132(6Y, Pd- 
0.. . H(11) 130(3)“, and 0-H 0.88(8) A. The interac- 
tion O(li)-H(11). . . 0, with an O(11). . .O distance of 
2.69(l) A and an O(ll)-H(11). . .O angle of 171(10)“, 
may be regarded as a hydrogen-bond of medium strength 
[6]. The other hydrogea-bond, involving an 0.. . O(21) 
distance of 2.65(l) A is however, weak, since the 
0-H.. . O(21) angle of 123(8)” is wel1 removed from 
the ideal hydrogen-bond geometry of 180” [6]. 

In contrast, adduct 2 has a coordinated aqua-group 
with pyramidal geometry at the oxygen atom [Pd-O- 
H(OA,OB) 118(4), 120(4)“; H(OA)-0-H(OB) 98(6)“] 
which is hydrogen-bonded to two pentafluorophenolate 
ions in a centrosymmetric dimer. The angles O- 
H(OA) . . . O(11) and 0-H(OB) . . . O(11’) are 175(6) and 
166(6Y, respectively, and Jhe 0.. . O(ll,ll’) distances 
of 2.607(7) and 2.577(6) A indicate that the hydrogen- 
bonding is strong [6]. The 0. . . 0 distances are similar 
to those reported for square-planar ds species containing 
M-OR . . . H-0% hydrogen-bonding [O . . . 0 = 
2.544(6)-2.64(4) A] [3a-e,g,i]. The pentafluoropheno- 
late oxygen atom, O(ll), is in an approximately planar 
environment with H(OA) . . . O(11). . . H(OB’) 97(3)” and 
C(ll)-O(11) . . . H(OA,OB’) angles of 133(3) and 
123(2)“. The presence of C,F,O- rather than C,FSOH 
is reflected in the occurrence of a C-0 bond distance 
[1.300(7) A] which is shorter than that for both coordi- 
nated C,F,O- [1.3:4(5) A] and hydrogen-bonded 
C,F,OH [1.344(4) A] in the palladium(I1) complex 
trans-PdH(OC,F,)(PCy,)2.C,FSOH [3b], and shorter 
than for hydrogen-bonded C,FSOH o in C,FSOH . . . 0 
(CH,CH,),O.. . HOC,Fá [1.348(l) A] [8a] and C,F,- 
OH.. . OPPh, [1.348(3) A] [8b]. 

The crystallization of 1 as a hydroxo-complex, but 2 
as an aqua-complex in which the potential ligand 
C,F,O- is not coordinated to palladium, presumably 
results from a complex interplay of several factors, 

Fig. 1. Projections of (a) [Pd(OHXC,H,)((pz)3BH}.2(3-MeC,H, 
OH)I (1) and (b) [Pd(OH,XC,H,X(pz),BH).(C,F,O)l, (2) showing 
selected atom numbering; 20% thermal ellipsoids are shown for the 
non-hydrogen atoms, 2nd hydrogen atoms haye been given an arbi- 
trary radius of 0.1 A. Selected distances (A) and angles (“): 1: 
C(21)-O(21) 1.37(2), C(ll)-O(11) 1.35(2), 0-H 0.88(8), 0(21)- 
H(21) 0.9(2), O(ll)-H(ll) 0.8(l), O...H(ll) 1.9(l). 0(21)...H 
2.06(9), Pd-0 2.011(8), Pd-N(2a,2b,2c) 2.18(l), 2.172(8), 2.036(9), 
Pd-C(1,4) 2.04(l), 2.02(l), Pd-0-H 132(6), Pd-0.. H(11) 130(3), 
O-H...0(21) 123(8), O...H(ll)-O(11) 171(10). 2: C(ll)-O(11) 
1.300(7), 0-H(OA,OB) 1.00(7), 0.78(6), O(11). . .H(OA) 1.60(8), 
O(11’). . . H(OB) 1.81(6), Pd-0 2.03.5(4), Pd-N(2a,2b,2c) 2.206(5), 
2.168(5), 2.020(4), Pd-C(1,4) 2.041(7), 2.046(8), Pd-0-H(OA,OB) 
120(4), 118(4), H(OA)-0-H(OB) 98(6), 0-H(OA). O(U) 175(6), 
0-H(OB). ..O(ll’) 166(6), H(OA)-O(ll)-H(OB’) 97(3); i = l- x, 
l-y,2-2. 
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including the higher acidity of pentafluorophenol CpK, 
5.49) than of m-cresol CpK, 10.08) [9] and the forma- 
tion of complex structures containing hydrogen-bond- 
ing. 

The structures reported here provide the first exam- 
ples of hydroxo-, aqua-, and diorganopalladium(IV) 
complexes in organopalladium(IV) chemistry, and sug- 
gest that it may be possible to develop a rich aqueous 
solution organometallic chemistry for palladium(N). 
The complexes also provide structural models that are 
relevant to proposals that pallada(IV)cyclic intermedi- 
ates are involved in organic synthesis [l,lO]. 
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